01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the limit of a function of the form f.g

Find the limit of a function of the form f.g Calculus

Find the following limits.

\lim\limits_{x \to \infty}2^{-x}.\left(1+\dfrac2x \right)

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = 2^{-x}
  • g\left(x\right) = 1+\dfrac{2}{x}

Then:

\lim\limits_{x \rightarrow \infty} 2^{-x} \cdot \left(1+\dfrac{2}{x}\right) = \lim\limits_{x \rightarrow \infty}2^{-x} \cdot \lim\limits_{x \rightarrow \infty} \left(1+\dfrac{2}{x}\right)

We have:

\lim\limits_{x \rightarrow \infty}2^{-x}=\lim\limits_{x \rightarrow \infty} \dfrac{1}{2^{x}} = \lim\limits_{t \rightarrow \infty}\dfrac{1}{t} = 0

And:

\lim\limits_{x \rightarrow \infty} \left(1+\dfrac{2}{x}\right) = 1 + 2\times \lim\limits_{x \rightarrow \infty}\dfrac{1}{x} = \left(1 + 0\right) = 1

Therefore:

\lim\limits_{x \rightarrow \infty} 2^{-x} \cdot \left(1+\dfrac{2}{x}\right)=0 \cdot 1 = 0

\lim\limits_{x \to \infty}2^{-x}.\left(1+\dfrac2x \right)=0

\lim\limits_{x \rightarrow -2} x^{3} \cdot 3x^{2}

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of two others functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = x^{3}
  • g\left(x\right) = 3x^{2}

Then:

\lim\limits_{x \rightarrow -2} x^{3} \cdot 3x^{2} = \lim\limits_{x \rightarrow -2} x^{3} \cdot \lim\limits_{x \rightarrow -2} 3x^{2}

We have:

\lim\limits_{x \rightarrow -2} x^{3} = \left(-2\right)^3 = -8

And:

\lim\limits_{x \rightarrow -2} 3x^{2} = 3\left(-2\right)^2 = 3\left(4\right) = 12

Therefore:

\lim\limits_{x \rightarrow -2} x^{3} \cdot 3x^{2} = -8 \cdot 12 = -96

\lim\limits_{x \rightarrow -2} 2^{-x} \cdot \left( 1+\dfrac{2}{x} \right) = -96

\lim\limits_{x \rightarrow \infty} \dfrac{2x + 1}{4x^2} \cdot \dfrac{3x^3 + 3}{x}

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = \dfrac{2x + 1}{4x^2}
  • g\left(x\right) = \dfrac{3x^3 + 3}{x}

Then:

\lim\limits_{x \rightarrow \infty} \dfrac{2x + 1}{4x^2} \cdot \dfrac{3x^3 + 3}{x} = \lim\limits_{x \rightarrow \infty} \dfrac{2x + 1}{4x^2} \cdot \lim\limits_{x \rightarrow \infty} \dfrac{3x^3 + 3}{x}

We have:

\lim\limits_{x \rightarrow \infty} \dfrac{2x + 1}{4x^2} = \lim\limits_{x \rightarrow \infty}\left( \dfrac{2x}{4x^2} + \dfrac{1}{4x^2}\right) = \lim\limits_{x \rightarrow \infty} \dfrac{1}{2x} + \dfrac{1}{4x^2} = \dfrac{1}{2}\times \lim\limits_{x \rightarrow \infty}\dfrac{1}{x} + \dfrac{1}{4}\times \lim\limits_{x \rightarrow \infty}\dfrac{1}{x^2} = 0 + 0 = 0

And:

\lim\limits_{x \rightarrow \infty} \dfrac{3x^3 + 3}{x} = \lim\limits_{x \rightarrow \infty} \left(\dfrac{3x^3}{x} + \dfrac{3}{x}\right) = \lim\limits_{x \rightarrow \infty} \left(3x^2 + \dfrac{3}{x}\right) = 3\times \lim\limits_{x \rightarrow \infty}x^2 + 3\times \lim\limits_{x \rightarrow \infty}\dfrac{1}{x} = \infty + 0 = \infty

Therefore:

\lim\limits_{x \rightarrow \infty} \dfrac{2x + 1}{4x^2} \cdot \dfrac{3x^3 + 3}{x} = 0 \cdot \infty = 0

\lim\limits_{x \rightarrow \infty} 2^{-x} \cdot \left( 1+\dfrac{2}{x} \right) = 0

\lim\limits_{x \rightarrow 3} 2^{x} \cdot \dfrac{4}{x - 3}

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = 2^{x}
  • g\left(x\right) = \dfrac{4}{x - 3}

Then:

\lim\limits_{x \rightarrow 3} 2^{x} \cdot \dfrac{4}{x - 3} = \lim\limits_{x \rightarrow 3} 2^{x} \cdot \lim\limits_{x \rightarrow 3} \dfrac{4}{x - 3}

We have:

\lim\limits_{x \rightarrow 3} 2^{x} = 2^{3} = 8

And:

\(\displaystyle\lim\limits_{x\to 3^-}(x-3)=0^-\) and \(\displaystyle\lim\limits_{x\to 3^+}(x-3)=0^+\).

Hence:

\(\displaystyle\lim\limits_{x\to 3^-}\dfrac{4}{x-3}=-\infty\) and \(\displaystyle\lim\limits_{x\to 3^+}\dfrac{4}{x-3}=\infty\).

Therefore:

\(\displaystyle\lim\limits_{x \to 3^-} \dfrac{4}{x - 3}\neq \lim\limits_{x \to 3^+} \dfrac{4}{x - 3

And:

\(\displaystyle\lim\limits_{x \to 3} \dfrac{4}{x - 3 is undefined.

The limit does not exist.

\lim\limits_{x \rightarrow 0} 3^{-x} \cdot \dfrac{2}{3} \left(x + 3\right)^2

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = 3^{-x}
  • g\left(x\right) = \dfrac{2}{3} \left(x + 3\right)^2

Then:

\lim\limits_{x \rightarrow 0} 3^{-x} \cdot \dfrac{2}{3} \left(x + 3\right)^2 = \lim\limits_{x \rightarrow 0} 3^{-x} \cdot \lim\limits_{x \rightarrow 0} \dfrac{2}{3} \left(x + 3\right)^2

We have:

\lim\limits_{x \rightarrow 0} 3^{-x} = 3^{0} = 1

And:

\lim\limits_{x \rightarrow 0} \dfrac{2}{3} \left(x + 3\right)^2 = \dfrac{2}{3} \left(0 + 3\right)^2 = \dfrac{2}{3} \left(3^2\right) = \left(2\right)\left(3\right) = 6

Therefore:

\lim\limits_{x \rightarrow 0} 3^{-x} \cdot \dfrac{2}{3} \left(x + 3\right)^2 = 1 \cdot 6 = 6

\lim\limits_{x \rightarrow 0} 2^{-x} \cdot \left( 1+\dfrac{2}{x} \right) = 6

\lim\limits_{x \rightarrow -1} \dfrac{3x^2}{x + 2} \cdot \dfrac{1}{x}

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = \dfrac{3x^2}{x + 2}
  • g\left(x\right) = \dfrac{1}{x}

Then:

\lim\limits_{x \rightarrow -1} \dfrac{3x^2}{x + 2} \cdot \dfrac{1}{x} = \lim\limits_{x \rightarrow -1} \dfrac{3x^2}{x + 2} \cdot \lim\limits_{x \rightarrow -1} \dfrac{1}{x}

We have:

\lim\limits_{x \rightarrow -1} \dfrac{3x^2}{x + 2} = \dfrac{3\left(-1\right)^2}{-1 + 2} = \dfrac{3}{1} = 3

And:

\lim\limits_{x \rightarrow -1} \dfrac{1}{x} = \dfrac{1}{-1} = -1

Therefore:

\lim\limits_{x \rightarrow -1} \dfrac{3x^2}{x + 2} \cdot \dfrac{1}{x} = 3 \cdot -1 = -3

\lim\limits_{x \rightarrow -1} 2^{-x} \cdot \left( 1+\dfrac{2}{x} \right) = -3

\lim\limits_{x \rightarrow 5} 5^{-x} \cdot 3x^{6}

The limit of a function that can be written as the product of two other functions is equal to the product of the limit of those two functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \cdot g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \cdot \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

The function can be re-written as f\left(x\right) \cdot g\left(x\right), with:

  • f\left(x\right) = 5^{-x}
  • g\left(x\right) = 3x^{6}

Then:

\lim\limits_{x \rightarrow 5} 5^{-x} \cdot 3x^{6} = \lim\limits_{x \rightarrow 5} 5^{-x} \cdot \lim\limits_{x \rightarrow 5} 3x^{6}

We have:

\lim\limits_{x \rightarrow 5} 5^{-x} = 5^{-5} = \dfrac{1}{5^5}

And:

\lim\limits_{x \rightarrow 5} 3x^{6} = 3\left( 5^{6} \right)

Therefore:

\lim\limits_{x \rightarrow 5} 5^{-x} \cdot 3x^{6} = \dfrac{1}{5^5} \cdot 3 \left( 5^{6} \right) = 3 \left( \dfrac{1}{5^5} \cdot 5^{6} \right) = 3 \left( \dfrac{5^6}{5^5} \right) = 3 \left( 5^{6-5} \right) = 3 \left( 5^{1} \right) = 15

\lim\limits_{x \rightarrow 5} 2^{-x} \cdot \left( 1+\dfrac{2}{x} \right) = 15

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Limits of functions
  • Exercise : Make conjecture about limits from graphs
  • Exercise : Identify vertifcal and horizontal asymptotes from graphs
  • Exercise : Find the limit of a polynomial
  • Exercise : Find the limit of an exponential function
  • Exercise : Find the limit of a function of the form f+g
  • Exercise : Find the limit of a function of the form f/g
  • Exercise : Find a zero-denominator limit using factorization
  • support@kartable.com
  • Legal notice

© Kartable 2026