01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Exercise : Find the limit of a function of the form f+g

Find the limit of a function of the form f+g Calculus

Find the following limits if they exist.

\lim\limits_{x \to -1} 4^x+3x^2

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \to -1} 4^x + 3x^2 = \left( \lim\limits_{x \rightarrow -1} 4^x \right) + \left( \lim\limits_{x \rightarrow -1} 3x^2 \right)

These limits can be evaluated by plugging -1 in for x:

\left( \lim\limits_{x \rightarrow -1} 4^x \right) = 4^{-1} = \dfrac{1}{4} = 0.25

\left( \lim\limits_{x \rightarrow -1} 3x^2 \right) = 3\left(-1\right)^2 = 3

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow -1} 4^x + 3x^2= 0.25 + 3

\lim\limits_{x \to -1} 4^x+3x^2=3.25

\lim\limits_{x \rightarrow 2} 4x^3 + \dfrac{2}{x}

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow 2} 4x^{3} + \dfrac{2}{x} = \left( \lim\limits_{x \rightarrow 2} 4x^{3} \right) + \left( \lim\limits_{x \rightarrow 2} \dfrac{2}{x} \right)

These limits can be evaluated by plugging 2 in for x:

\left( \lim\limits_{x \rightarrow 2} 4x^{3} \right) = 4\left(2\right)^3 = 4\left(8\right) = 32

\left( \lim\limits_{x \rightarrow 2} \dfrac{2}{x} \right) = \dfrac{2}{2} = 1

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow 2} 4x^{3} + \dfrac{2}{x} = 32 + 1 = 33

\lim\limits_{x \rightarrow 2} 4x^3 + \dfrac{2}{x} = 33

\lim\limits_{x \rightarrow 3} x^{-2} + x^{2}

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow 3} x^{-2} + x^{2} = \left( \lim\limits_{x \rightarrow 3} x^{-2} \right) + \left( \lim\limits_{x \rightarrow 3} x^{2} \right)

These limits can be evaluated by plugging 3 in for x:

\left( \lim\limits_{x \rightarrow 3} x^{-2} \right) = 3^{-2} = \dfrac{1}{3^2} = \dfrac{1}{9}

\left( \lim\limits_{x \rightarrow 3} x^{2} \right) = 3^2 = 9

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow 3} x^{-2} + x^{2} = \dfrac{1}{9} + 9 = \dfrac{82}{9}

\lim\limits_{x \rightarrow 3} x^{-2} + x^{2} = \dfrac{82}{9}

\lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} + \dfrac{2x}{3}

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} + \dfrac{2x}{3} = \left( \lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} \right) + \left( \lim\limits_{x \rightarrow \infty } \dfrac{2x}{3} \right)

These limits can be evaluated by plugging \infty in for x:

\left( \lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} \right) = \left( \lim\limits_{x \rightarrow \infty } \dfrac{3}{2x} \right) = \dfrac{3}{2}\cdot \lim\limits_{x\to \infty}\dfrac{1}{x} = 0

\left( \lim\limits_{x \rightarrow \infty } \dfrac{2x}{3} \right) = \dfrac{2}{3}\cdot \lim\limits_{x\to\infty}x = \infty

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} + \dfrac{2x}{3} = 0 + \infty = \infty

\lim\limits_{x \rightarrow \infty } \dfrac{3x}{2x^2} + \dfrac{2x}{3} = \infty

\lim\limits_{x \rightarrow 4} \dfrac{5x}{4 - x} + 16x^2 - 4x

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow 4} \dfrac{5x}{4 - x} + 16x^2 - 4x = \left( \lim\limits_{x \rightarrow 4} \dfrac{5x}{4 - x} \right) + \left( \lim\limits_{x \rightarrow 4} 16x^2 - 4x \right)

To evluate these limits let's try to plug 4 in for x:

\(\displaystyle\lim\limits_{x\to 4^-}(4-x)=0^+\) and \(\displaystyle\lim\limits_{x\to 4^+}(4-x)=0^-\).

Hence, with \lim\limits_{x\to 4}5x=5\cdot4=20, we get:

\(\displaystyle\lim\limits_{x\to 4^-}\dfrac{5x}{4-x}=\infty\) and \(\displaystyle\lim\limits_{x\to 4^+}\dfrac{5x}{4-x}=-\infty\).

Therefore:

\(\displaystyle\lim\limits_{x \to 4^-} \dfrac{5x}{4-x}\neq \lim\limits_{x \to 4^+} \dfrac{5x}{4-x

And:

\(\displaystyle\lim\limits_{x \to 4} \dfrac{5}{4-x is undefined.

\left( \lim\limits_{x \rightarrow 4} 16x^2 - 4x \right) = 16\left(4\right)^2 - 4\left(4\right) = 16\left(16\right) - 16 = 240

Since the limit of one of the functions is undefined, the overall limit is also undefined.

The limit doesn't exist.

\lim\limits_{x \rightarrow \infty } 3^{-x} + \dfrac{2x - 1}{4x^2}

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow \infty } 3^{-x} + \dfrac{2x - 1}{4x^2} = \left( \lim\limits_{x \rightarrow \infty } 3^{-x} \right) + \left( \lim\limits_{x \rightarrow \infty } \dfrac{2x - 1}{4x^2} \right)

These limits can be evaluated by plugging \infty in for x:

\lim\limits_{x \rightarrow \infty }\left( 3^{-x} \right) = \lim\limits_{x\to \infty} \dfrac{1}{3^x} = \lim\limits_{X\to \infty}\dfrac{1}{X} = 0

\lim\limits_{x \rightarrow \infty }\left( \dfrac{2x - 1}{4x^2} \right) = \lim\limits_{x \rightarrow \infty } \left(\dfrac{1}{2x} - \dfrac{1}{4x^2} \right) = \dfrac{1}{2}\cdot \lim\limits_{x\to\infty} \dfrac{1}{x}- \dfrac{1}{4}\cdot\lim\limits_{x\to\infty}\dfrac{1}{x^2}= 0 - 0 = 0

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow \infty } 3^{-x} + \dfrac{2x - 1}{4x^2} = 0 + 0 = 0

\lim\limits_{x \rightarrow \infty } 3^{-x} + \dfrac{2x - 1}{4x^2} = 0

\lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} + 4x^2

The limit of a function that can be written as the sum of other functions is equal to the sum of the limits of each of the individual functions:

\lim\limits_{x \rightarrow a} f\left(x\right) \pm g\left(x\right) = \left( \lim\limits_{x \rightarrow a} f\left(x\right) \right) \pm \left( \lim\limits_{x \rightarrow a} g\left(x\right) \right)

For this problem, the limit can be re-written as:

\lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} + 4x^2 = \left( \lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} \right) + \left( \lim\limits_{x \rightarrow -3} 4x^2 \right)

These limits can be evaluated by plugging -3 in for x:

\left( \lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} \right) = \dfrac{2\left(-3\right)}{3^\left(-3\right)} = \left(-6\right)\left(3^3\right) = \left(-6\right)\left(27\right) = -162

\left( \lim\limits_{x \rightarrow -3} 4x^2 \right) = 4\left(-3\right)^2 = 4\left(9\right) = 36

Summing the limits to get the limit of the overall function yields:

\lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} + 4x^2 = -162 + 36 = -126

\lim\limits_{x \rightarrow -3} \dfrac{2x}{3^x} + 4x^2 = -126

The editorial charter guarantees the compliance of the content with the official National Education curricula. Learn more

The courses and exercises are written by the Kartable editorial team, made up of teachers certified and accredited. Learn more

See also
  • Course : Limits of functions
  • Exercise : Make conjecture about limits from graphs
  • Exercise : Identify vertifcal and horizontal asymptotes from graphs
  • Exercise : Find the limit of a polynomial
  • Exercise : Find the limit of an exponential function
  • Exercise : Find the limit of a function of the form f.g
  • Exercise : Find the limit of a function of the form f/g
  • Exercise : Find a zero-denominator limit using factorization
  • support@kartable.com
  • Legal notice

© Kartable 2026