01 76 38 08 47
Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

Kartable logo
HomeBrowseSearchLog in

To enjoy 10 free documents.

  1. Home
  2. 12th grade
  3. Calculus
  4. Course : Limits of functions

Limits of functions Calculus

Summary

IIntroduction to limitsADefinition and introductive examples1Definition2Limit at infinityBLefthand and righthand limitsCLimits and graphs1Graphic interpretation for a limit at infinity2Graphic interpretation for a limit at a pointIILimits of usual functionsALimit at a pointBLimit at the infinityIIIProperties of limitsAAddition, subtraction, and constant laws1Addition law2Subtraction law3Constant lawBMultiplication and division laws1Multiplication law2Division lawCPower, root, and composition laws1Power law2Root law3Composition lawDFind a zero-denominator limit using factorizationEL'Hospital's rule
I

Introduction to limits

A

Definition and introductive examples

The concept of limit is fundamental to the study of calculus. The concept of a limit is to understand the behavior of functions at infinity or near infinitely.

For example, let us consider the following function's behavior as x approaches \infty :

f\left(x\right)=\dfrac{4x+1}{x}

x \dfrac{4x+1}{x}
.1 14
1 5
10 4.1
100 4.01
1000 4.001
10 000 4.0001
1,000,000 4.00001
10,000,000 4.000001
100,000,000 4.0000001

Observe as the values of x become larger and larger, the values of f\left(x\right) approach 4.

1

Definition

Limit of a function

Let f\left(x\right) be a function and L a real number. If the values of f\left(x\right) are near L whenever x approaches a, but are not equal to a, we say that the limit as x approaches a is L. We write:

\lim\limits_{x\to a}f\left(x\right)=L

Consider the following function:

f\left(x\right)=2x+1

As x approaches a=3, the values of f\left(x\right) approach 7 :

x 2x+1
1 3
2 5
2.5 6
2.9 6.8
3 7
3.1 7.2
3.5 8
4 9

Observe for x -values near 3 that the values of 2x+1 are near 7. In particular,

\lim\limits_{x\to 3}\, 2x+1=7

If there is no number L so that the limit as x approaches a is L, then we say the limit of f\left(x\right) does not exist at a.

Consider the following function:

f\left(x\right)=\dfrac{1}{x}

Observe for positive x -values near 0 that the function \dfrac{1}{x} takes on large positive values. However, for negative x -values near 0, the function \dfrac{1}{x} takes on large negative values. Therefore, the limit \lim\limits_{x\to 0}\dfrac{1}{x} does not exist. This can also be seen graphically. Consider the graph of \dfrac{1}{x} :

-

Observe as x approaches 0 from the right that the graph of f\left(x\right) approaches \infty and as x approaches 0 from the left that the graph of f\left(x\right) approaches -\infty. Therefore the limit does not exist.

2

Limit at infinity

Let f\left(x\right) be a function and L a real number. If the values of f\left(x\right) are arbitrarily near L whenever x is arbitrarily large and positive, we write:

\lim\limits_{x\to \infty }f\left(x\right)=L

Consider the following function:

f\left(x\right)=\dfrac{1}{x}

We have the following:

\lim\limits_{x\to \infty}\dfrac{1}{x}=0

The above limit at infinity is zero because, for large values of x, the denominator of the rational function is large while the numerator of the rational function is the relatively small number 1.

-

Let f\left(x\right) be a function and L a real number. If the values of f\left(x\right) are arbitrarily near L whenever x is arbitrarily large and negative, then we write:

\lim\limits_{x\to -\infty }f\left(x\right)=L

B

Lefthand and righthand limits

Lefthand limit

Let f\left(x\right) be a function and L a real number. If the values of f\left(x\right) are near L whenever x is slightly less than but not equal to a, we say that the lefthand limit as x approaches a is L. We write:

\lim\limits_{x\to a^-}f\left(x\right)=L

Consider the greatest integer function:

f\left(x\right)=\lfloor x \rfloor

Recall that if a is a real number, then \lfloor a\rfloor is the greatest integer which is less than or equal to a.

In particular, for x -values satisfying 0\leq x\lt 1 we have:

\lfloor x\rfloor=0

Therefore:

\lim\limits_{x\to 1^-}f\left(x\right)=0

Righthand limit

Let f\left(x\right) be a function and L a real number. If the values of f\left(x\right) are near L whenever x is slightly greater than but not equal to a, we say that the righthand limit as x approaches a is L. We write:

\lim\limits_{x\to a^+}f\left(x\right)=L

Consider the greatest integer function:

f\left(x\right)=\lfloor x \rfloor

Work from the previous examples proves the following:

\lim\limits_{x\to 1^+}f\left(x\right)=1

The information about the limits of the floor function can also be seen graphically:

-

For x -value slightly less than 1, the graph agrees with y=0. For x -values slightly greater than 1, the graph agrees with y=1.

The limit of a function at a point exists if and only if the lefthand and righthand limits exist and agree at that point.

Let f\left(x\right) be a function and L a real number. Then \lim\limits_{x\to a}f\left(x\right)=L if and only if:

\lim\limits_{x\to a^-}f\left(x\right)=\lim\limits_{x\to a^+}f\left(x\right)=L

-
C

Limits and graphs

1

Graphic interpretation for a limit at infinity

Suppose f\left(x\right) is a function, L is a real number, and we have the following limit at infinity:

\lim\limits_{x\to \infty}f\left(x\right)=L

The graph of f\left(x\right) will approach the line y=L as x approaches infinity. Equivalently, the graph of f\left(x\right) will have a horizontal asymptote of y=L.

-

Consider the arctangent function:

f\left(x\right)=\arctan\left(x\right)

By examining the graph of f\left(x\right), we have the following limits at infinity:

  • \lim\limits_{x\to \infty}\arctan\left(x\right)=\dfrac{\pi}{2}
  • \lim\limits_{x\to -\infty}\arctan\left(x\right)=\dfrac{-\pi}{2}
-

The graph of the arctangent function f\left(x\right)=\arctan\left(x\right) has horizontal asymptotes of y=\dfrac{\pi}{2} and y=-\dfrac{\pi}{2}.

Suppose f\left(x\right) is a function and we have the following limit at infinity:

\lim\limits_{x\to \pm\infty}f\left(x\right)=\pm \infty

Then the graph will not have a horizontal asymptote at \infty.

Consider the quadratic function:

f\left(x\right)=x^2

By examining the graph of f\left(x\right), we have the following limits at infinity:

  • \lim\limits_{x\to \infty}x^2=\infty
  • \lim\limits_{x\to -\infty}x^2=\infty
-
2

Graphic interpretation for a limit at a point

Suppose f\left(x\right) is a function and L is a real number. Suppose further that f is not defined at point a and that we have the following limit:

\lim\limits_{x\to a}f\left(x\right)=\pm \infty

The graph will have a vertical asymptote at x=a.

Consider the graph of the function f\left(x\right)=\dfrac{1}{x-1} :

-

Observe that the graph of \dfrac{1}{x-1} has a vertical asymptote at x=1 and that the pieces of the graph do not meet to the left and to the the right of the vertical asymptote.

II

Limits of usual functions

A

Limit at a point

Limits of usual functions such as:

  • polynomial functions
  • trigonometric functions
  • exponential functions
  • logarithmic functions

at points in their domain can be found by simply evaluating the function at the point.

Consider the following function:

f\left(x\right)=x^2-3x+4

Then:

\lim\limits_{x\to 3}f\left(x\right)=f\left(3\right)=3^2-3\left(3\right)+4=4

B

Limit at the infinity

Limits at infinity of a polynomial function

Let f\left(x\right)=x^n+a_{n-1}x^{n-1}\cdots a_1x+a_0 be a polynomial function. Then:

\lim\limits_{x\to \infty}f\left(x\right)=\infty

And:

\lim\limits_{x\to -\infty}f\left(x\right)=\begin{cases} \infty &\mbox{if }n\mbox{ is even} \cr \cr -\infty & \mbox{if }n \mbox{ is odd} \end{cases}

Consider the following polynomial function:

f\left(x\right)=x^3+1

Then:

\lim\limits_{x\to \infty} x^3+1=\infty\\\mbox{and}\\\lim\limits_{x\to-\infty}x^3+1=-\infty

Limit at infinity of rational functions

Consider two polynomial functions:

  • g\left(x\right)=a_nx^n+\cdots + a_1x+a_0
  • h\left(x\right)=b_mx^m+\cdots +b_1x+b_0

Let f\left(x\right) be the following rational function:

f\left(x\right)=\dfrac{g\left(x\right)}{h\left(x\right)}

Then we have the following limits at infinity:

  • \lim\limits_{x\to \infty}f\left(x\right)=0 if n \lt m
  • \lim\limits_{x\to \infty}f\left(x\right)=\infty if n \gt m
  • \lim\limits_{x\to \infty}f\left(x\right)=\dfrac{a_n}{b_m} if n=m

Consider the following rational function:

f\left(x\right)=\dfrac{2x^7-3x^2+110}{-15x^7+12x^3}

The degree of numerator agrees with the degree of the denominator and we therefore have the following limit at infinity:

\lim\limits_{x\to \infty}f\left(x\right)=\dfrac{2}{-15}

Limit at infinity of exponential functions

Let a be a positive real number not equal to 1 and consider the following exponential function:

f\left(x\right)=a^x.

If a \gt 1, then:

\lim\limits_{x\to \infty}a^x=\infty\mbox{ and }\lim\limits_{x\to-\infty}a^x=0

If 0\lt a \lt 1, then:

\lim\limits_{x\to \infty}a^x=0\mbox{ and }\lim\limits_{x\to-\infty}a^x=\infty

Consider the following exponential function:

f\left(x\right)=e^x

The number e is greater than 1. Therefore:

\lim\limits_{x\to \infty}f\left(x\right)=\infty

Limit at infinity of logarithmic functions

Let a be a positive real number not equal to 1 and consider the following logarithmic function:

f\left(x\right)=\log_a\left(x\right)

If a \gt 1, then:

\lim\limits_{x\to \infty}\log_a\left(x\right)=\infty

If 0\lt a \lt 1, then:

\lim\limits_{x\to \infty}\log_a\left(x\right)=-\infty

Consider the natural logarithmic function:

f\left(x\right)=\ln\left(x\right)=\log_e\left(x\right)

The number e is greater than 1. Therefore:

\lim\limits_{x\to \infty}f\left(x\right)=\infty

The periodic nature of trigonometric functions cause most trigonometric functions not to have a limit at \infty.

Consider the graph of trigonometric function f\left(x\right)=\sin\left(x\right) :

-

As x tends to \infty, the graph of \sin\left(x\right) oscillates between 1 and -1. Hence the function f\left(x\right)=\sin\left(x\right) does not have a limit as x approaches \infty.

III

Properties of limits

A

Addition, subtraction, and constant laws

1

Addition law

Addition law

Suppose f\left(x\right) and g\left(x\right) are functions and that:

  • \lim\limits_{x\to a}f\left(x\right)=L_1
  • \lim\limits_{x\to a}g\left(x\right)=L_2

Then we have the following limit:

\lim\limits_{x\to a}\left(f\left(x\right)+g\left(x\right)\right)=L_1+L_2

Consider the following two functions:

  • f\left(x\right)=\sin\left(x\right)
  • g\left(x\right)=\tan\left(x\right)

Then we have the following limits:

  • \lim\limits_{x\to \frac{\pi}{4}}\sin\left(x\right)=\dfrac{\sqrt{2}}{2}
  • \lim\limits_{x\to \frac{\pi}{4}}\tan\left(x\right)=1

Therefore:

\lim\limits_{x\to \frac{\pi}{4}}\left(\sin\left(x\right)+\tan\left(x\right)\right)=\dfrac{\sqrt{2}}{2}+1

-
2

Subtraction law

Subtraction law

Suppose f\left(x\right) and g\left(x\right) are functions and that:

  • \lim\limits_{x\to a}f\left(x\right)=L_1
  • \lim\limits_{x\to a}g\left(x\right)=L_2

Then we have the following limit:

\lim\limits_{x\to a}\left(f\left(x\right)-g\left(x\right)\right)=L_1-L_2

Consider the following two functions:

  • f\left(x\right)=\sin\left(x\right)
  • g\left(x\right)=\tan\left(x\right)

Then we have the following limits:

  • \lim\limits_{x\to \frac{\pi}{4}}\sin\left(x\right)=\dfrac{\sqrt{2}}{2}
  • \lim\limits_{x\to \frac{\pi}{4}}\tan\left(x\right)=1

Therefore:

\lim\limits_{x\to \frac{\pi}{4}}\left(\sin\left(x\right)-\tan\left(x\right)\right)=\dfrac{\sqrt{2}}{2}-1

3

Constant law

Constant law

Suppose f\left(x\right) is a function and that:

\lim\limits_{x\to a}f\left(x\right)=L_1

If C is a real number, then we have the following limit:

\lim\limits_{x\to a}Cf\left(x\right)=CL_1

Consider the following function:

f\left(x\right)=\arctan\left(x\right)

Then we have:

\lim\limits_{x\to \infty}\arctan\left(x\right)=\dfrac{\pi}{4}

Therefore:

\lim\limits_{x\to \infty}4\arctan\left(x\right)=4\cdot \dfrac{\pi}{4}=\pi

B

Multiplication and division laws

1

Multiplication law

Multiplication law

Suppose f\left(x\right) and g\left(x\right) are functions and:

  • \lim\limits_{x\to a}f\left(x\right)=L_1
  • \lim\limits_{x\to a}g\left(x\right)=L_2

Then we have the following limit:

\lim\limits_{x\to a}\left(f\left(x\right)g\left(x\right)\right)=L_1L_2

Consider the following functions:

  • f\left(x\right)=x^2-1
  • g\left(x\right)=|x|

Then we have the following:

  • \lim\limits_{x\to 0}\left(x^2-1\right)=-1
  • \lim\limits_{x\to 0}|x|= 0

It follows that:

\lim\limits_{x\to 0}\left(x^2-1\right)|x|=\left(-1\right)\cdot 0=0

-
2

Division law

Division law

Suppose f\left(x\right) and g\left(x\right) are functions and that:

  • \lim\limits_{x\to a}f\left(x\right)=L_1
  • \lim\limits_{x\to a}g\left(x\right)=L_2

Suppose further that L_2\not = 0. Then we have the following limit:

\lim\limits_{x\to a}\dfrac{f\left(x\right)}{g\left(x\right)}=\dfrac{L_1}{L_2}

Consider the following function:

  • f\left(x\right)=\tan\left(x\right)=\dfrac{\sin\left(x\right)}{\cos\left(x\right)}

Then we have the following:

  • \lim\limits_{x\to \frac{\pi}{4}}\sin\left(x\right)=\dfrac{\sqrt{2}}{2}
  • \lim\limits_{x\to \frac{\pi}{4}}\cos\left(x\right)=\dfrac{\sqrt{2}}{2}

Therefore:

\lim\limits_{x\to \frac{\pi}{4}}\tan\left(x\right)=\dfrac{\dfrac{\sqrt{2}}{2}}{\dfrac{\sqrt{2}}{2}}\\=1

-
C

Power, root, and composition laws

1

Power law

Power law

Suppose f\left(x\right) is a function and that:

\lim\limits_{x\to a}f\left(x\right)=L

Then if n is a positive integer:

\lim\limits_{x\to a}\left(f\left(x\right)\right)^n=L^n

Consider the following function:

f\left(x\right)=\sin\left(x\right)

Then we have the following:

\lim\limits_{x\to \frac{\pi}{3}}\sin\left(x\right)=\dfrac{\sqrt{3}}{2}

It follows:

\lim\limits_{x\to \frac{\pi}{4}}\sin^2\left(x\right)=\left(\dfrac{\sqrt{3}}{2}\right)^2\\=\dfrac{3}{4}

2

Root law

Root law

Suppose f\left(x\right) is a function and that:

\lim\limits_{x\to a}f\left(x\right)=L

If n is an odd number, then:

\lim\limits_{x\to a}\left(f\left(x\right)\right)^{\frac{1}{n}}=L^{\frac{1}{n}}

If n is an even number, then:

  • \lim\limits_{x\to a}\left(f\left(x\right)\right)^{\frac{1}{n}}=L^{\frac{1}{n}} if L \gt 0
  • \lim\limits_{x\to a}\left(f\left(x\right)\right)^{\frac{1}{n}} does not exit if L\leq 0

Consider the following piecewise function:

f\left(x\right)=\begin{cases} x^2-1 & x\not= 2 \cr \cr 17 & x=2 \end{cases}

Then we have the following:

\lim\limits_{x\to 2}f\left(x\right)=2^2-1=3

It follows that:

\lim\limits_{x\to 2}\left(f\left(x\right)\right)^{\frac{1}{4}}=3^{\frac{1}{4}}

3

Composition law

Composition law

Suppose f\left(x\right) and g\left(x\right) are functions and that:

  • \lim\limits_{x\to a}f\left(x\right)=L_1
  • \lim\limits_{x\to L_1}g\left(x\right)=L_2

Then we have the following limit:

\lim\limits_{x\to a}g\left(f\left(x\right)\right)=L_2

Consider the following functions:

  • f\left(x\right)=x-7
  • g\left(x\right)=x^2+9

Then we have the following:

  • \lim\limits_{x\to 8}f\left(x\right)=1
  • \lim\limits_{x\to 1}g\left(x\right)=9

It follows that:

\lim\limits_{x\to 8}g\left(f\left(x\right)\right)=9

D

Find a zero-denominator limit using factorization

Suppose f\left(x\right)=\dfrac{g\left(x\right)}{h\left(x\right)} is a rational function and that a is a real number such that h\left(a\right)=0.

We can find the limit by using factorization and simplifying the rational function.

Consider the following rational function:

f\left(x\right)=\dfrac{x^2-1}{x^2-3x+2}

Observe that the denominator of the rational function is 0 when evaluated at x=1. However, the rational function can be reduced:

f\left(x\right)=\dfrac{x^2-1}{x^2-3x+2}\\=\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x-2\right)}\\=\dfrac{x+1}{x-2}

Therefore we have the following limit:

\lim\limits_{x\to 1}f\left(x\right)=\lim\limits_{x\to 1}\dfrac{x+1}{x-2}=\dfrac{2}{-1}\\=-2

E

L'Hospital's rule

L'Hospital's

Let g\left(x\right) and h\left(x\right) be differentiable functions and suppose that for some real number a :

  • \lim\limits_{x\to a}g\left(x\right)=\lim\limits_{x\to a}h\left(x\right)=0 or
  • \lim\limits_{x\to a}g\left(x\right)=\lim\limits_{x\to a}h\left(x\right)=\infty

Then we have the following:

\lim\limits_{x\to a}\dfrac{g\left(x\right)}{h\left(x\right)}=\lim\limits_{x\to a}\dfrac{g'\left(x\right)}{h'\left(x\right)}

Reconsider the following rational function:

f\left(x\right)=\dfrac{x^2-1}{x^2-3x+2}

Then we have the following:

  • \lim\limits_{x\to 1}\left(x^2-1\right)=0
  • \lim\limits_{x\to1}\left(x^2-3x+2\right)=0

By L'Hospital's rule we therefore have:

\lim\limits_{x\to 1}\dfrac{x^2-1}{x^2-3x+2}=\lim\limits_{x\to 1}\dfrac{\left(x^2-1\right)'}{\left(x^2-3x+2\right)'}\\=\lim\limits_{x\to 1}\dfrac{2x}{2x-3}\\=\dfrac{2}{-1}\\=-2

Consider the following function:

f\left(x\right)=\dfrac{\sin\left(x\right)}{x}

Then we have the following:

  • \lim\limits_{x\to 0} \sin\left(x\right)=0\\
  • \lim\limits_{x\to 0}x=0

By L'Hospital's rule:

\lim\limits_{x\to 0}\dfrac{\sin\left(x\right)}{x}=\lim\limits_{x\to 0}\dfrac{\cos\left(x\right)}{1}\\=\cos\left(0\right)\\=1

L'Hospital's rule can even be used multiple times in a single example to compute a limit.

Consider the following rational function:

f\left(x\right)=\dfrac{x^2-1}{x^3-x^2-x+1}

Then we have the following:

  • \lim\limits_{x\to 1} \left(x^2-2x+1\right)=0
  • \lim\limits_{x\to 1}\left(x^3-x^2-x+1\right)=0

Therefore by L'Hospital's rule:

\lim\limits_{x\to 1}\dfrac{x^2-2x+1}{x^3-x^2-x+1}=\lim\limits_{x\to 1}\dfrac{2x-2}{3x^2-2x-1}

Now observe the following:

  • \lim\limits_{x\to 1}\left(2x-2\right)=0
  • \lim\limits_{x\to 1}\left(3x^2-2x-1\right)=0

Applying L'Hospital's rule a second time:

\lim\limits_{x\to 1}\dfrac{x^2-2x+1}{x^3-x^2-x+1}=\lim\limits_{x\to 1}\dfrac{2x-2}{3x^2-2x-1}\\\lim\limits_{x\to 1}\dfrac{2}{6x-2}\\=\dfrac{2}{4}\\=\dfrac{1}{2}

See also
  • Exercise : Make conjecture about limits from graphs
  • Exercise : Identify vertifcal and horizontal asymptotes from graphs
  • Exercise : Find the limit of a polynomial
  • Exercise : Find the limit of an exponential function
  • Exercise : Find the limit of a function of the form f+g
  • Exercise : Find the limit of a function of the form f.g
  • Exercise : Find the limit of a function of the form f/g
  • Exercise : Find a zero-denominator limit using factorization
  • support@kartable.com
  • Legal notice

© Kartable 2025